Reactions between half- and full-FLP recombination target sites. A model system for analyzing early steps in FLP protein-mediated site-specific recombination.
نویسندگان
چکیده
The FLP recombination target (FRT) can be cut in half so that only one FLP protein binding site is present (a "half site"). FLP protein binds the half sites and joins them into dimeric, asymmetric head-to-head complexes held together chiefly by strong noncovalent interactions. These complexes react with full (normal) FRT sites to generate a variety of products. Analysis of these DNA species reveals that the reaction follows a well-defined reaction pathway that generally parallels the normal reaction pathway. The system is useful in analyzing early steps in recombination, since the identity of the products in a given recombination event unambiguously pinpoints the order in which the cleavage and strand exchange reactions occur. Two conclusions are derived from the present study: (i) Formation of the dimeric head-to-head complex of half sites is a prerequisite to further steps in recombination. (ii) The identity of the base pairs at positions 6 and -6 within the FRT site has a subtle effect in directing the first strand exchange event in the reaction to predominantly one of two possible cleavage sites. In addition, results are presented that suggest that a DNA-DNA pairing intermediate involving only two base pairs of the core sequence is formed prior to the first cleavage and strand exchange. DNA-DNA interactions may therefore not be limited to the isomerization step that follows the first strand exchange.
منابع مشابه
Protein-based asymmetry and protein-protein interactions in FLP recombinase-mediated site-specific recombination.
When the FLP recombination target (FRT) is cut in half so that only one FLP protein-binding site is present, FLP protein forms a complex in which two such sites are linked head to head. Although held together exclusively by noncovalent interactions, this complex survives electrophoresis in an agarose gel and exhibits a half-life that can be measured in hours. Characterization of this complex in...
متن کاملA protein dissociation step limits turnover in FLP recombinase-mediated site-specific recombination.
When two ongoing FLP-mediated recombination reactions are mixed, formation of cross-products is subject to a lag of several minutes, and the subsequent rate of cross-product formation is greatly reduced relative to normal reaction progress curves. The lag reflects the formation of a stable complex containing multiple FLP monomers and two FLP recombination target-containing DNA recombination pro...
متن کاملPositive selection of FLP-mediated unequal sister chromatid exchange products in mammalian cells.
Site-specific recombination provides a powerful tool for studying gene function at predetermined chromosomal sites. Here we describe the use of a blasticidin resistance system to select for recombination in mammalian cells using the yeast enzyme FLP. The vector is designed so that site-specific recombination reconstructs the antibiotic resistance marker within the sequences flanked by the FLP t...
متن کاملFLP Recombinase-Mediated Site-Specific Recombination in Silkworm, Bombyx mori
A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In th...
متن کاملA Protein Dissociation Step Limits Turnover in FLP
When two ongoing FLP-mediated recombination reactions are mixed, formation of cross-products is subject to a lag of several minutes, and the subsequent rate of cross-product formation is greatly reduced relative to normal reaction progress curves. The lag reflects the formation of a stable complex containing multiple FLP monomers and two FLP recombination target-containing DNA recombination pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 267 11 شماره
صفحات -
تاریخ انتشار 1992